Self-Adaptive Parallel Processing Neural Networks with irregular Nodal Processing Powers using Hierarchical Partitioning
نویسندگان
چکیده
The architecture and working of the Artificial Neural Networks are an inspiration from the human brain. The brain due to its highly parallel nature and immense computational powers still remains the motivation for researchers. A single system-single processor approach is highly unlikely way to model a neural network for large computational needs. Many approaches have been proposed that adopt a parallel implementation of ANNs. These methods do not consider the difference in processing powers of the constituting units and hence workload distribution among the nodes is not optimal. Human Brain not always has equal processing power among the neurons. A person having disability in some part of brain may be able to perform every task with reduced capabilities. Disabilities weaken the processing of some parts. This inspires us to make a self-adaptive system of ANN that would optimally distribute computation among the nodes. The self-adaptive nature of the algorithm makes it possible for the algorithm to taper dynamic changes in node performance. We used data, node and layer partitioning in a hierarchical manner in order to evolve the most optimal architecture comprising of the best features of these partitioning techniques. The adaptive hierarchical architecture enables performance optimization in whatever condition and problem the algorithm is used. The system was implemented and tested on 20 systems working in parallel. Besides, the computational speedup, the algorithm was able to monitor changes in performance and adapt accordingly.
منابع مشابه
Online Estimation of Elbow Joint Angle Using Upper Arm Acceleration: A Movement Partitioning Approach
Estimating the elbow angle using shoulder data is very important and valuable in Functional Electrical Stimulation (FES) systems which can be useful in assisting C5/C6 SCI patients. Much research has been conducted based on the elbow-shoulder synergies.The aim of this study was the online estimation of elbow flexion/extension angle from the upper arm acceleration signals during ADLs. For this, ...
متن کاملDistributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements
Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...
متن کاملAdaptive meshes and shells: irregular triangulation, discontinuities, and hierarchical subdivision
Adaptive meshes are dynamic networks of nodal masses interconnected by adjustable springs. They are useful for nonuniformly sampling and reconstructing visual data. This paper extends the adaptive mesh model in the following ways: it (i) develops open adaptive meshes and closed adaptive shells based on triangular and rectangular elements, (ii) proposes a discontinuity detection and preservation...
متن کاملDiagnosis of brain tumor using image processing and determination of its type with RVM neural networks
Typically, the diagnosis of a tumor is done through surgical sampling, which is more precise with existing methods. The difference is that this is an aggressive, time consuming and expensive way. In the statistical method, due to the complexity of the brain tissues and the similarity between the cancerous cells and the natural tissues, even a radiologist or an expert physician may also be in er...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013